Role of volume-stimulated osmolyte and anion channels in volume regulation by mammalian sperm.
نویسندگان
چکیده
The ability to maintain cellular volume is an important general physiological function. Swelling induced by hypotonic stress results in the opening of channels, through which ions exit with accompanying water loss (regulatory volume decrease, RVD). RVD has been shown to occur in mammalian sperm, primarily through the opening of quinine-sensitive potassium channels. However, as yet, direct evidence for the participation of anion channels in sperm RVD has been lacking. The chloride channel type ClC-3 is believed to be involved in RVD in other cell types. Using electronic cell sizing for cell volume measurement, the following results were obtained. (i) The anion channel blockers 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), tamoxifen and 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS) increased hypotonic swelling in concentration-dependent fashion, whereas verapamil (P-glycoprotein inhibitor) had little effect. The most potent, NPPB and DIDS, blocked RVD without affecting cell membrane integrity at effective concentrations. (ii) When gramicidin was included to dissipate Na+/K+ gradients, major secondary swelling was observed under hypotonic conditions. This secondary swelling could be reduced by NPPB, and suppressed completely by replacing chloride in the medium with sulphate, an ion which does not pass through chloride channels. It was deduced that the initial hypotonic swelling activated an anion channel through which chloride ions could then enter freely down a concentration gradient, owing to the lack of a counter-gradient of potassium. (iii) Taurine, an osmolyte often involved in RVD, does not appear to play a role in sperm RVD because lengthy preincubation with taurine did not alter sperm RVD response. Our observations provide direct evidence that a chloride channel (possibly ClC-3) is involved in the process of volume regulation in mammalian sperm.
منابع مشابه
Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC.
Regulation of cell volume is critical for many cellular and organismal functions, yet the molecular identity of a key player, the volume-regulated anion channel VRAC, has remained unknown. A genome-wide small interfering RNA screen in mammalian cells identified LRRC8A as a VRAC component. LRRC8A formed heteromers with other LRRC8 multispan membrane proteins. Genomic disruption of LRRC8A ablated...
متن کاملVolume-activated trimethylamine oxide efflux in red blood cells of spiny dogfish (Squalus acanthias).
The aims of this study were to determine the pathway of swelling-activated trimethylamine oxide (TMAO) efflux and its regulation in spiny dogfish (Squalus acanthias) red blood cells and compare the characteristics of this efflux pathway with the volume-activated osmolyte (taurine) channel present in erythrocytes of fishes. The characteristics of the TMAO efflux pathway were similar to those of ...
متن کاملCell volume regulation: osmolytes, osmolyte transport, and signal transduction.
In recent years, it has become evident that the volume of a given cell is an important factor not only in defining its intracellular osmolality and its shape, but also in defining other cellular functions, such as transepithelial transport, cell migration, cell growth, cell death, and the regulation of intracellular metabolism. In addition, besides inorganic osmolytes, the existence of organic ...
متن کاملAssociation of the band 3 protein with a volume-activated, anion and amino acid channel: a molecular approach.
In response to swelling, cells recover their initial volume by releasing intracellular solutes via volume-sensitive pathways. There is increasing evidence that structurally dissimilar organic osmolytes (amino acids, polyols, methyl amines), which are lost from cells in response to swelling, share a single pathway having the characteristics of an anion channel. However, the molecular identity of...
متن کاملDisruption of mitochondrial respiration inhibits volume-regulated anion channels and provokes neuronal cell swelling.
Hypoxia and inhibitors of mitochondrial respiration impair the regulatory volume decrease (RVD) of cerebellar granule neurons after hypotonic swelling. RVD is linked to the opening of volume-regulated anion channels (VRACs). VRACs are outwardly rectifying, inactivate slowly during maintained depolarization, and are permeable to the cellular organic osmolyte taurine. Channel activation requires ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular human reproduction
دوره 10 11 شماره
صفحات -
تاریخ انتشار 2004